## Synthetic Routes to Butadienyl Complexes. Double Addition of Methylene to an Acetylide and Hydrometallation of an Ene–Yne. X-Ray Crystal Structure of $[Fe_2(CO)_5{\mu-\eta^2,\eta^3-H_2C=C(Me)C=CH_2}(\mu-PPh_2)]$

## Susan M. Breckenridge, Shane A. MacLaughlin, Nicholas J. Taylor and Arthur J. Carty\*

Guelph-Waterloo Centre for Graduate Work in Chemistry, Waterloo Campus, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Binuclear butadienyl complexes [Fe<sub>2</sub>(CO)<sub>5</sub>{ $\mu$ - $\eta^2$ , $\eta^3$ -H<sub>2</sub>C=C(R)C=CH<sub>2</sub>}( $\mu$ -PPh<sub>2</sub>)] (R = Bu<sup>t</sup>, Me) have been synthesized *via* double addition of CH<sub>2</sub> fragments to an acetylide in [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ - $\eta^1$ , $\eta^2$ -C=CBu<sup>t</sup>)( $\mu$ -PPh<sub>2</sub>)] or hydrometallation of the ene–yne CH<sub>2</sub>=C(Me)C=CH with [HFe<sub>2</sub>(CO)<sub>7</sub>( $\mu$ -PPh<sub>2</sub>)].

Although the chemistry of unsaturated organic ligands at bi-and poly-nuclear centres has been a major focus of activity in organometallic chemistry for many years, only recently has attention turned to more complex polyunsaturated fragments such as allenylidenes<sup>1</sup> and allenyls.<sup>2</sup> Polyunsaturated fourcarbon groups, including butadiynyl (-C=C-C=CH), butatrienylidene ( $C=C=C=CH_2$ ) and isomeric 1- or 2-butadienyl (HC=CH-CH=CH<sub>2</sub> or H<sub>2</sub>C=CH-C=CH<sub>2</sub>) fragments are rare in organometallic chemistry<sup>3</sup> and their chemical behaviour remains largely undeveloped. We are exploring synthetic routes to binuclear complexes bearing four-carbon atom polyunsaturated ligands and in this communication we describe the generation of  $\mu$ - $\eta^2$ , $\eta^3$ -butadienyl ligands at a binuclear centre *via* double methylene addition to a  $\mu$ - $\eta^1$ , $\eta^2$ acetylide and *via* hydrometallation of the ene-yne CH<sub>2</sub>=C(Me)C=CH by [HFe<sub>2</sub>(CO)<sub>7</sub>( $\mu$ -PPh<sub>2</sub>)].

Treatment of  $[Fe_2(CO)_6(\mu-\eta^1,\eta^2-C\equiv CBu^1)(\mu-PPh_2)]$  **1** (0.40 g, 0.73 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) with an excess of freshly generated diazomethane in diethyl ether (0.2 mol dm<sup>-3</sup>), added dropwise in 2 ml portions every 20 min until all starting



Scheme 1

material has been consumed, gave a red solution, which after column chromatography on Florisil (hexane eluent) and crystallisation at  $-5^{\circ}$ C afforded **2a** in 67% yield.<sup>†</sup> <sup>1</sup>H and <sup>13</sup>C NMR data for 2a were suggestive of the presence of an alkenyl  $[-C(R)=CH_2]$  moiety, a second =CH<sub>2</sub> group and a carbon-13 resonance with no nuclear Overhauser enhancement. Recognising that divnes and ene-ynes represented a potential source of µ-η-coordinated four-carbon fragments we treated the hydride [HFe<sub>2</sub>(CO)<sub>7</sub>( $\mu$ -PPh<sub>2</sub>)] (0.33 g, 0.68 ml) generated from Na[Fe<sub>2</sub>(CO)<sub>7</sub>( $\mu$ -PPh<sub>2</sub>)]·1.5thf<sup>4</sup> (thf = tetrahydrofuran) via reaction with 85% HBF<sub>4</sub>·Et<sub>2</sub>O, with HC=CC(Me)=CH<sub>2</sub> (0.05 g, 0.68 mmol). After 12 h, the mixture was chromatographed on alumina, yielding two bands, the major product being  $[Fe_2(CO)_5\{\mu-\eta^2,\eta^3-H_2C=C(Me)C=CH_2\}(\mu-PPh_2)]$  2b  $[Fe_2(CO)_6 \{\mu - \eta^1, \eta^2 -$ (55%) and the minor  $H_2C=C(Me)C=CH_2\{(\mu-PPh_2)\}$  3. Spectroscopic data for 2b<sup>‡</sup> indicated an analogous structure to 2a, a result confirmed by X-ray diffraction (vide infra). Both synthetic routes (Scheme 1) provide 2 in good yields. The diazomethane-acetylide coupling strategy should be applicable to other diazoalkanes and  $\mu$ - $\eta^1$ , $\eta^2$ -acetylides. Double methylene additions to coordinated unsaturated ligands are unusual.<sup>5</sup> Hydrodimetallation of ene-ynes by the reagent  $[HFe_2(CO)_7(\mu-PPh_2)]$  is a potentially powerful method of accessing 2-butadienyl complexes since the [Fe]<sub>2</sub>-H addition across the triple bond of alkynes is predominantly Markovnikov and cis.6 Thus, the generation of butadienyldiiron complexes via this route may be limited only by the availability of ene-ynes.



**Fig. 1** The molecular structure of  $[Fe_2(CO)_5{\mu-\eta^2,\eta^3-H_2C=C(Me)-C=CH_2}(\mu-PPh_2)]$  **2b** showing the atomic numbering. Selected bond lengths (Å) and angles (°) are as follows: Fe(1)–Fe(2) 2.635(1); Fe(1)–P 2.157(1); Fe(2)–P 2.272(1); Fe(1)–C(6) 2.148(3); Fe(1)–C(7) 2.103(2); Fe(1)–C(8) 1.929(2); Fe(2)–C(8) 2.063(2); Fe(2)–C(9) 2.174(2); C(6)–C(7) 1.399(4); C(7)–C(8) 1.421(3); C(8)–C(9) 1.386(3); Fe(1)–P–Fe(2) 73.0(1); C(6)–C(7)–C(8) 116.7(2); C(7)–C(8)–C(9) 143.4(1).

In order to confirm the nature of 2a and 2b an X-ray analysis of 2b was carried out§ (Fig. 1). The hydrocarbyl interacts with the binuclear framework through all four carbon atoms C(6)–C(9) with Fe(1) attached via an alkenic  $\eta^2$ -bond to C(7)-C(8) and a  $\sigma$ -bond to C(8) while Fe(2) is attached to the second double bond between C(8) and C(9). The C(6)-C(7)[1.399(4) Å] and C(8)-C(9) [1.386(3) Å] distances are longer than the C=C double bond lengths (1.337 Å) in buta-1,3diene,<sup>7</sup> but within the range observed for  $\eta^2$ -alkene and  $\mu$ - $\eta^1$ , $\eta^2$ -alkenyl complexes of iron.<sup>6g,8</sup> The central C(7)-C(8) bond [1.421(3) Å] is slightly shorter than in butadiene (1.483 Å). The 2-butadienyl ligand can be viewed as an alkenyl ligand substituted with a 2-propenyl group at the  $\alpha$ -carbon and is a net five-electron donor to the binuclear framework. Other four-carbon butadienyl chains in bi- or poly-nuclear complexes of which we are aware include the cations  $[Cp_2(CO)_2Fe_2(\mu-CO)\{\mu-\eta^1,\eta^2-E-CH=CHCH=CRR^1]^+$  (R = R<sup>1</sup> = Me; R = H, R<sup>1</sup> = Ph) and  $[Cp_2(CO)_2Fe_2(\mu-CO)\{\mu-\eta^2,\eta^2-E^2-CH=CHCH=CRR^1]^+$  $\eta^1, \eta^2$ -E-CH=CHCH=C(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]+,<sup>3b</sup> the cluster  $[Ru_{3}(CO)_{6}(\mu - CO)(PPh_{3}) \{\mu_{3} - \eta^{1}, \eta^{2}, \eta^{2} - CH_{2} = C(Pr^{i})C = CH_{2}\}(\mu - \mu^{2})$ PPh<sub>2</sub>)] (Cp =  $\eta^{5}$ -cyclopentadienyl)<sup>9a</sup> and several butadienyl

§ Crystal data: C<sub>22</sub>H<sub>17</sub>Fe<sub>2</sub>O<sub>5</sub>P, M = 504.0, triclinic, space group  $P\overline{1}$ , a = 8.928(2), b = 10.363(1), c = 12.844(2) Å,  $\alpha = 89.35(1)$ ,  $\beta = 84.25(1)$ ,  $\gamma = 68.37(1)^\circ$ , U = 1098.7(3) Å<sup>3</sup>, Z = 2,  $D_c = 1.524$  g cm<sup>-3</sup>,  $\mu$ (Mo-K $\alpha$ ) = 0.71073 Å, F(000) = 512. Diffraction data were collected with a Siemens R3m/V diffractometer ( $\omega$  scans;  $200 \pm 1$  K). The structure solution (Patterson, Fourier methods) and refinement (full-matrix least-squares) was performed using the Siemens SHELXTL PLUS software and was based on 4415 observed intensities [ $F > 6.0\sigma(F)$ ] from 5083 measured data ( $20 \le 55^\circ$ ). Final R and R<sub>w</sub> values were 0.025 and 0.043. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

<sup>&</sup>lt;sup>†</sup> Selected spectroscopic data for **2a**: IR(C<sub>6</sub>H<sub>14</sub>) v(CO)/cm<sup>-1</sup>: 2047m, 2005s, 1987m, 1972w, 1940m. <sup>31</sup>P{<sup>1</sup>H} NMR (81.0 MHz; C<sub>6</sub>D<sub>6</sub>; 298 K): δ 178.2 (s). <sup>13</sup>C{<sup>1</sup>H} NMR (50.3 MHz; CDCl<sub>3</sub>; 298 K): δ 216.8 (d, CO. <sup>2</sup>*J*<sub>PC</sub> 8.4 Hz), 216.4 (d, CO. <sup>2</sup>*J*<sub>PC</sub> 16.7 Hz), 175.4 (d, C=CH<sub>2</sub>, <sup>2</sup>*J*<sub>PC</sub> 26.2 Hz), 140.8–127.9 (m, PhC), 107.4 (s, CBu<sup>t</sup>=CH<sub>2</sub>), 45.0 (s, CBu<sup>t</sup>=CH<sub>2</sub>), 39.1 (d, C=CH<sub>2</sub>, <sup>2</sup>*J*<sub>PC</sub> 9.1 Hz), 35.1 (s, CMe<sub>3</sub>). <sup>1</sup>H NMR (250.1 MHz; CDCl<sub>3</sub>; 298 K): δ 7.71–7.24 (m, Ph-H), 3.60 (s, CBu<sup>t</sup>=CHH'), 2.91 (dd, <sup>2</sup>*J*<sub>HH</sub> 4.9 Hz, <sup>3</sup>*J*<sub>PH</sub> 11.2 Hz, C=CHH'), 1.81 (s, CBu<sup>t</sup>=CHH'), 1.34 (s, CMe<sub>3</sub>). Satisfactory elemental analyses were obtained.

<sup>‡</sup> Selected spectroscopic data for **2b**: IR(C<sub>6</sub>H<sub>14</sub>) v(CO)/cm<sup>-1</sup>: 2047m, 2006s, 1988m, 1972w, 1945m. <sup>31</sup>P{<sup>1</sup>H} NMR (81.0 MHz; CDCl<sub>3</sub>; 298 K): δ 174.7 (s). <sup>13</sup>C{<sup>1</sup>H} NMR (50.3 MHz; CDCl<sub>3</sub>; 298 K): δ 216.6 (d, CO, <sup>2</sup>*J*<sub>PC</sub> 7.0 Hz), 215.0 (d, CO, <sup>2</sup>*J*<sub>PC</sub> 15.5 Hz), 175.5 (d, C=CH<sub>2</sub>, <sup>2</sup>*J*<sub>PC</sub> 27.4 Hz), 140.3–126.3 (m, Ph–C), 92.7 (s, CMe=CH<sub>2</sub>), 51.9 (s, CMe=CH<sub>2</sub>), 38.6 (d, C=CH<sub>2</sub>, <sup>2</sup>*J*<sub>PC</sub> 9.1 Hz), 27.1 (s, Me). <sup>1</sup>H NMR (200.1 MHz; CDCl<sub>3</sub>; 298 K): δ 7.49–7.03 (m, Ph–H); 3.34 (s, CMe=CHH'), 2.70 (dd, <sup>2</sup>*J*<sub>HH</sub> 5.0 Hz, <sup>3</sup>*J*<sub>PH</sub> 10.8 Hz, C=CHH'), 2.12 (d, <sup>4</sup>*J*<sub>PH</sub> 1.7 Hz, Me), 1.92 (s, CMe=CHH'), 1.83 (≈t, <sup>2</sup>*J*<sub>HH</sub> 5.0 Hz, <sup>3</sup>*J*<sub>PH</sub> ≈ 5.0 Hz, C=CHH'). Satisfactory elemental analyses were obtained.

binuclear species.<sup>9b–e</sup> Unlike 2a, b, however, the cations<sup>3b</sup> are substituted  $\mu$ - $\eta^1$ , $\eta^2$ -alkenyl species with an alkenic substituent uncoordinated. Despite the greater number of interacting metal atoms in the triruthenium cluster, the carbon-carbon bond lengths and the trans stereochemistry of the hydrocarbyl chain are remarkably similar. The three-carbon fragment C(8)-C(7)-C(6) may also be compared with allenyl ligands at binuclear centres.<sup>2</sup> Recent work has shown that these are of two types: type (a) with  $\mu$ - $\eta^1$ , $\eta^2$ -coordination and a free double bond; type (b) with  $\mu$ - $\eta^2$ , $\eta^3$ -bonding. Complex **2b** is related to type (b) by the addition of a coordinated = $CH_2$ group. A significant and distinctive chemistry is emerging for these compounds, including their use in the synthesis of dimetallacyclopentane and dimetallacyclopentene derivatives<sup>2b</sup> and mixed-metal clusters.<sup>2b,10</sup> Thus, the butadienyl ligands in 2a,b should also prove useful as a source of four-carbon units in organometallic or cluster synthesis. We are currently examining the broader scope of the synthetic routes to butadienyl systems shown in Scheme 1 and the patterns of reactivity of these four-carbon hydrocarbyls.

We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

## Received, 14th August 1991; Com. 1/04258K

## References

- 1 (a) M. I. Bruce, *Chem. Rev.*, 1991, **91**, 197; (b) S. F. T. Froom, M. Green, K. R. Nagle and D. J. Williams, *J. Chem. Soc.*, *Chem. Commun.*, 1987, 1305.
- G. H. Young, M. V. Raphael, A. Wojcicki, M. Calligaris, G. Nardin and N. Bresciani-Pahor, *Organometallics*, 1991, **10**, 1934;
  (b) S. M. Breckenridge, N. J. Taylor and A. J. Carty, *Organometallics*, 1991, **10**, 837;
  (c) D. Seyferth, G. B. Womack, C. M. Archer and J. C. Dewan, *Organometallics*, 1989, **8**, 430.
- 3 (a) M. Etienne and J. E. Guerchais, J. Chem. Soc., Dalton Trans., 1989, 2187; (b) C. P. Casey, M. S. Konings, M. A. Gohdes and M. W. Meszaros, Organometallics, 1988, 7, 2103; (c) A. Wong, P. C. W. Kang, C. D. Tagge and D. R. Leon, Organometallics, 1990, 9, 1992; (d) F. A. Cotton, J. D. Jamerson and B. R. Stults, Inorg. Chim. Acta, 1976, 17, 235; (e) M. I. Bruce, T. W. Hambley, M. J. Liddell, M. R. Snow, A. G. Swincer and E. R. T. Tiekink,

Organometallics, 1990, 9, 96; (f) N. Pirio, D. Touchard, L. Toupet and P. H. Dixneuf, J. Chem. Soc., Chem. Commun., 1991, 980.

- 4 (a) R. T. Baker, J. C. Calabrese, P. J. Krusig, M. J. Therien and W. C. Trogler, J. Am. Chem. Soc., 1988, **110**, 8392; (b) W. T. Osterloh, PhD Thesis, University of Texas, Austin, TX, 1982.
- 5 (a) R. E. Colborn, A. F. Dyke, B. P. Gracey, S. A. R. Knox, K. A. Macpherson, K. A. Mead and A. G. Orpen, J. Chem. Soc., Dalton Trans., 1990, 761; (b) R. E. Colborn, A. F. Dyke, S. A. R. Knox, K. A. Macpherson and A. G. Orpen, J. Organomet. Chem., 1982, 239, C15; (c) E. Delgado, J. Hein, J. C. Jeffery, A. L. Ratermann, F. G. A. Stone and L. J. Farrugia, J. Chem. Soc., Dalton Trans., 1987, 1191; (d) M. E. Garcia, N. H. Tran-Huy, J. C. Jeffery, P. Sherwood and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2201.
- 6 For a summary of additions of μ-H ligands to unsaturated organic molecules see: (a) C. M. Hay, A. D. Horton, M. J. Mays and P. R. Raithby, *Polyhedron*, 1988, **7**, 987; (b) M. Lourdichi and R. Mathieu, *Organometallics*, 1986, **5**, 2067; (c) J. Ros and R. Mathieu, *Organometallics*, 1983, **2**, 771; (d) J. B. Keister and J. R. Shapley, *J. Organomet. Chem.*, 1975, **85**, C29; (e) A. J. Deeming, S. Hasso and M. Underhill, *J. Organomet. Chem.*, 1974, **80**, C53; (f) W. G. Jackson, B. F. G. Johnson, J. W. Kelland, J. Lewis and K. T. Schorpp, *J. Organomet. Chem.*, 1975, **87**, C27; (g) G. Conde, K. Henrick, M. McPartlin, A. D. Horton and M. J. Mays, *New J. Chem.*, 1988, **12**, 559.
- 7 A. Almenningen, O. Bastiansen and M. Traetteberg, *Acta Chem. Scand.*, 1958, **12**, 1221.
- 8 (a) J. A. Beck, S. A. R. Knox, G. H. Riding, G. E. Taylor and M. J. Winter, J. Organomet. Chem., 1980, 202, C49; (b) S. Aime, L. Milone, E. Sappa, A. Tiripicchio and M. Tiripicchio-Camellini, J. Chem. Soc., Dalton Trans., 1979, 1155; (c) A. G. Orpen, D. Pippard, G. M. Sheldrick and K. D. Rouse, Acta Crystallog., Sect. B, 1978, 34, 2466; (d) S. D. Ittel and J. A. Ibers, Adv. Organomet. Chem., 1976, 14, 33; (e) D. M. P. Mingos, Adv. Organomet. Chem., 1977, 15, 1.
- 9 (a) D. Nucciarone, N. J. Taylor, A. J. Carty, A. Tiripicchio, M. Tiripicchio-Camellini and E. Sappa, Organometallics, 1988, 7, 118; (b) R. Yáñez, J. Ras and R. Mathieu, J. Organomet. Chem., 1990, 389, 197; (c) M. O. Fryzuk, W. E. Piers, S. J. Rettig, F. W. B. Einstein, T. Jones and T. A. Albright, J. Am. Chem. Soc., 1989, 111, 5709; (d) S. A. R. Knox, J. Organomet. Chem., 1990, 400, 255; (e) K. H. Franzreb and C. G. Kreiter, Z. Naturforsch, Teil B, 1982, 37, 1058.
- 10 A. Wojcicki and C. E. Shuchart, Coord. Chem. Rev., 1990, 105, 35.